New Insights/ A 3-DoF Robotic Platform for MS PatientsNew Insights/ A 3-DoF Robotic Platform for MS PatientsNew Insights/ A 3-DoF Robotic Platform for MS PatientsNew Insights/ A 3-DoF Robotic Platform for MS Patients
  • RESEARCH CENTERS
  • CORE FACILITIES
    • Advanced Microscopy
    • Cell Culture
    • Molecular Cell Biology
    • Proteomics
    • Drug Discovery
    • Bioinformatics
    • Biomaterials
    • Electrophysiology and Behavior
    • Cognitive Neuroscience
    • Animal House
  • PEOPLE
    • Administration
    • Research Staff
    • Students
  • SERVICES
    • Analytical Services
    • Imaging Services
      • Microscopic Imaging
      • In Vivo Imaging
  • EVENTS
    • Event Calendar
    • Critical Mind
    • SABITALKS
    • InFocus
    • CROSSTALKS
    • SABITA Podcast
    • Social
  • ABOUT US
    • Our Mission
    • Gender Equality Policy
  • RESEARCH CENTERS
  • CORE FACILITIES
    • Advanced Microscopy
    • Cell Culture
    • Molecular Cell Biology
    • Proteomics
    • Drug Discovery
    • Bioinformatics
    • Biomaterials
    • Electrophysiology and Behavior
    • Cognitive Neuroscience
    • Animal House
  • PEOPLE
    • Administration
    • Research Staff
    • Students
  • SERVICES
    • Analytical Services
    • Imaging Services
  • EVENTS
    • Event Calendar
    • Critical Mind
    • SABITALKS
    • InFocus
    • CROSSTALKS
    • SABITA Podcast
    • Social
  • ABOUT US
    • Our Mission
    • Gender Equality Policy

New Insights/ A 3-DoF Robotic Platform for MS Patients

Istanbul Medipol University faculty member Dr. Elif Hocaoglu and her student Tugce Ersoy present the design, implementation, and experimental evaluation of a novel 3 DoF parallel manipulator to treat the balance problems in MS. 

The robotic platform allows angular motion of the ankle based on its anthropomorphic freedom. Moreover, the end-effector endowed with upper and lower platforms is designed to evaluate both the pressure distribution of each foot and the CoM of the body, respectively. Data gathered from the platforms are used to both evaluate the performance of the patients and use the high-level control of the robotic platform to regulate the difficulty level of tasks. In this study, kinematic and dynamic analyses of the robot are derived and validated in a simulation environment. Low level control of the first prototype is also successfully implemented through the PID controller. 

For detailed information about the article

Share

SOCIAL MEDIA

SHORTCUT LINKS

 

  • Contact
  • Corporate Identity
  • Referrence Guide
  • Request Forms
  • Sabita 360°
  • Sabita Society
  • Social

OUR MISSION

Translation of Scientific Findings From Bench to Bedside

  • Read More
  • © 2025 Medipol University | SABITA Research Institute for Health Sciences and Technologies
    [contact-form-7 id="50" title="Contact form 1"]